
11. NUMERICAL TECHNIQUES 

Abstract — Simulation of modern electromagnetic 
applications with Finite Element Analysis (FEA) requires to 
solve large sparse linear systems, that may reach up to millions 
of unknowns variables. Dealing with large matrix involves the 
use of sparse data structures. A transient matrix is necessary to 
gather information from the mesh or other equations in order 
to finally produce a matrix in optimized sparse format. 
Classical approaches to design sparse patterns are not efficient 
in large scale applications. In this paper, we focus and propose 
a generic approach for both building and ordering sparse 
matrix, in particular for coupled fem/electric circuit modeling. 

I. INTRODUCTION 

The capability of modern computers allows scientists to 
study more challenging case studies. Dealing with complex 
geometries and finest mesh involves large amount of data 
manipulated in the solving process and thus requires the use 
of fast algorithms. Algorithm accuracy can be measured 
through its ability to scale and preserve performance when 
the amount of data increases. In Finite Element Analysis, it 
is necessary to solve linear systems A.x=b, usually by using 
iterative solvers. When storing and manipulating sparse 
matrices, it is useful and often necessary to use data 
structures that take advantage of the sparse structure of the 
matrix. According to mesh information, a matrix is framed 
in a transient format, which is efficient for an incremental 
construction and for creating the final sparse matrix. List of 
lists (LIL) algorithm offers facilities and effectiveness in 
finite element cases. The request for modelling designs with 
solid conductors connected to electric circuits leads to the 
creation of strongly coupled formulations FE-Electric 
Circuit introduced by [3] and [4]. The Electric circuit rarely 
exceeds thousand of equations. Sparsity property differs in 
lonely finite element problem and drastically affects the 
performance of the matrix building algorithm.  

II. CLASSICAL APPROACH 

Large linear systems are often solved by iterative 
solvers thanks to their low memory requirements. 
Preconditioning techniques can improve the reliability and 
the efficiency of iterative methods. Reordering strategies are 
used to reduce fill-in in complete LU decomposition, it can 
also significantly improve the quality of incomplete LU 
factorizations. Thus, we include reordering pre-processing 
in our building of the sparse matrix algorithm Reverse 
Cuthill-McKee, (RCM) [1]. In FEA softwares, finite 
elements and electric circuit components are often stored in 
a database, the transient matrix is built by questioning this 
database. The Matrix is framed with a reduced fill-in 

profile: reducing bandwidth reordering and finite element 
unknown variables first, in order to design a look-like down 
arrow shape. The classical approach STD_LIL (fig.1) 
consists in using a list of lists: a list of non zero column 
positions per row. For each finite element, we compute the 
pattern of the local stiffness matrix, and put non zero terms 
in the list of lists LIL. 

1: For all finite elements 
Form non-zero terms of the local stiffness matrix in a list of position (I,J) 

=> Insert (I,J) in the LIL global matrix 
2: Form the list of electric circuit  and coupled FE/EC non zero term in (I,J)

=> Insert (I,J) in the LIL global matrix     
3: Get permutation from RCM algorithm (FE unknowns in front)  
4: Apply permutation in the LIL matrix
5: Create the CRS matrix (Compressed Row Storage)
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Fig. 1. Standard algorithm STD_LIL  

The set of problems used for the numerical experiments 
is representative of linear systems solved in electromagnetic 
computation. In order to assess scalability, we compare the 
time of computation for various mesh refinements. In every 
case the STD_LIL algorithm scales poorly. Bad accuracy 
particularly appears in coupled finite element/electric circuit 
(FE/EC) applications. The matrix pattern has both sparse 
and dense parts. RCM algorithm and reordering task are 
costly in the dense part. 

 
 Fig. 2. Performance of STD_LIL algorithm 

III.  SUBMATRIX APPROACH 

A. Principle 

Using sorted LIL is the first most obvious way to 
optimize performance, this helps minimizing look up in 
searching, sorting and inserting tasks. The structure pattern 
suggests using a block approach which seems natural. The 
two different patterns have their own specific data 
structures. An ordered LIL data structure is well adapted to 
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the finite element pattern which has a native reduced 
bandwidth profile. 

 
Fig. 2. Structure of coupled matrix 

The down arrow shape needed in global matrix patters 
for an efficient incomplete factorization is preserved. Using 
blocks has the two main « divide and conquer » benefits . A 
natural data parallelism appears, and the size of the array 
manipulated decreases, thus leading to faster computation. 

A global LIL is necessary to gather at last sub-matrices, we 
neglect the memory requirement over-cost to focus on 
computation time.  

7: Create the CRS matrixCRS matrixCRS matrixCRS matrix (Compressed Row Storage)

FE_Submat1 LIL
EC_Submat1 LIL
CPL_SubmatARRAYS
Global Matrix1 LIL

Data Structure:

Fast 

Look up

a) with CPL_Submat, upper partCPL_Submat, upper partCPL_Submat, upper partCPL_Submat, upper part
b) with FE_SubmatFE_SubmatFE_SubmatFE_Submat
c)  with EC_SubmatEC_SubmatEC_SubmatEC_Submat
d)  with CPL_Submat, lower partCPL_Submat, lower partCPL_Submat, lower partCPL_Submat, lower part

6: Fill the LIL global matrix

1: Create the finite element ordered LIL submatrix: : : : EF_Submat 
2: Create the electric circuit ordered LIL submatrix: : : : EC_Submat 
3: Form FE/EC non zero list in UNORDERED UNORDERED UNORDERED UNORDERED array: CPL_Submat
4: Get permutation of  submatrix FE_Submat and EC_Submat
5: Sort the permutedpermutedpermutedpermuted arrays of coupled submatrix CPL_Submat

7: Create the CRS matrixCRS matrixCRS matrixCRS matrix (Compressed Row Storage)

FE_Submat1 LIL
EC_Submat1 LIL
CPL_SubmatARRAYS
Global Matrix1 LIL

Data Structure: FE_Submat1 LIL
EC_Submat1 LIL
CPL_SubmatARRAYS
Global Matrix1 LIL

FE_Submat1 LIL FE_Submat1 LIL
EC_Submat1 LIL EC_Submat1 LIL
CPL_SubmatARRAYS CPL_SubmatARRAYS
Global Matrix1 LIL Global Matrix1 LIL

Data Structure:

Fast 

Look up

Fast 

Look up

a) with CPL_Submat, upper partCPL_Submat, upper partCPL_Submat, upper partCPL_Submat, upper part
b) with FE_SubmatFE_SubmatFE_SubmatFE_Submat
c)  with EC_SubmatEC_SubmatEC_SubmatEC_Submat
d)  with CPL_Submat, lower partCPL_Submat, lower partCPL_Submat, lower partCPL_Submat, lower part

6: Fill the LIL global matrix

1: Create the finite element ordered LIL submatrix: : : : EF_Submat 
2: Create the electric circuit ordered LIL submatrix: : : : EC_Submat 
3: Form FE/EC non zero list in UNORDERED UNORDERED UNORDERED UNORDERED array: CPL_Submat
4: Get permutation of  submatrix FE_Submat and EC_Submat
5: Sort the permutedpermutedpermutedpermuted arrays of coupled submatrix CPL_Submat

 
Fig. 3. SBM_LIL algorithm and data structure 

As Cpl_Submat is excluded of the reordering process, 
unordered LIL is adapted to collect non zero positions and 
fill in the global LIL optimally. Step 5 improves 
significantly insertion of large array in sorted list. STD_LIL 
and SBM_LIL algorithms were implemented in FEA 
software Flux®, distributed by Cedrat. The two approaches 
provide the same matrix pattern. Scaling performances are 
shown in fig. 4. In 3D FE simulation, CPU time is reduced 
by 3, which is mainly due to the use of ordering in the LIL 
data structure. For FE/EC simulation, MTD_LIL is 40x 
faster and scalability is globally better for the whole 
problems set. 

B. Industrial case  

In order to improve the efficiency of electrical device, 
EDF R&D uses finite element analysis simulations to 
optimize their transverse flux heating devices, shown in Fig. 
5.  

The steady state AC magnetic 3D simulation leads to the 
solving of a linear system of 2,2 million of unknowns. 
About 300 millions of non zero values may be found in the 

matrix, and more than 50% of these are found in the 
CPL_Submat. 

 
         Fig. 4. SBM_LIL algorithm and data structure   

 
Fig. 5.  Transverse flux heating device (courtesy of EDF)  

This is due to fine mesh of coil conductor connected to 
electric circuit variables. The basic approach takes 2 full 
days to build the matrix, mainly due to the reordering task 
in electric circuit part of the global matrix. The new method 
presented is very fast , it takes around 3 minutes to compute 
the sparse matrix. Excluding CPL_Submat of reordering 
task and adapting optimization (step 5-6) leads to a decrease 
in time of lookup for data insertion, which is even more the 
case when dealing with huge data arrays. 

C. Conclusion and future works 

We propose a fast and flexible algorithm to build and 
reorder sparse matrix in finite element solving processes. 
We measure the impact of ordering strategy and provide a 
fast method for coupled FE/EC model which leads to 
important time saving when dealing with industrial 
applications. We should focus on minimizing memory 
requirements, and exploiting intrinsic task/data parallelism 
of the method on multicore architecture. 
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